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Abstract The momentum entropic moments and Rényi entropies of a one-
dimensional particle in an infinite well potential are found by means of explicit calcula-
tions of some Dirichlet-like trigonometric integrals. The associated spreading lengths
and quantum uncertainty-like sums are also provided.
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1 Introduction

A major goal of the information theory of quantum systems is the determination
of the uncertainty fundamental quantities beyond the well-known standard deviation
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(or its square, the variance) in both position and momentum spaces [1–4]. They include
the spreading measures of global (entropic moments, the Rényi, Shannon and Tsal-
lis’ entropies and lengths) and local (Fisher’s information) character [5–7,3]. These
information-theoretic measures quantify the spread of the position and momentum
one-particle densities of the system (which are the basic variables according to the
Density Functional Theory [8]) in various complementary ways and, in contrast to the
variance, without reference to any specific point of the corresponding Hilbert space.
Moreover, they are closely related to various energetic and experimentally measurable
quantities of the system [3,8–11].

However, they have not yet been or cannot be analytically calculated; not even for the
one-dimensional systems with a Coulomb, oscillator or infinite well potential despite
they are very often used to explain and predict numerous physico-mathematical phe-
nomena in science and technology. The present knowledge of the information-theoretic
measures of the hydrogenic, oscillator-like and particle-in-a-box systems is described
in Refs. [9,10,12] and [13], respectively. Therein we realize that the entropic moments
and the Rényi, Shannon and Tsallis entropies are not yet known except for the lowest-
and highest-lying states, mainly because they are power (entropic moments, Rényi and
Tsallis entropies) or logarithmic (Shannon entropy) functionals of the corresponding
densities. The calculation of the Fisher information is somewhat easier because of its
close connection with the kinetic energy.

In this paper we will center around the particle-in-a-box system, which is com-
posed by a particle moving in the infinite well potential V (x) = 0 for |x | < a and
∞ otherwise. This canonical system has been used to simplify the description of
numerous scientific phenomena in nuclei [14], polymers [15] and various nanosys-
tems [16,17] as well as in chaos [18], among others. The quantum-mechanical states
of this system are characterized [13,19,20] by the energies

En = π2

8a2 n2; n = 1, 2, 3, . . . ,

and the densities

ρn(x) =
{ 1

a
sin2

[πn

2a
(x − a)

]
; |x | ≤ a

0; |x | > a

and

γn(p) = πn2

2

sin2
[
ap − πn

2

]
(

a2 p2 − π2n2

4

)2 ; p ∈ (−∞,+∞), (1)

in position and momentum spaces, respectively. Recently, the power moments 〈xk〉
and the entropic moments Wk[ρn] = 〈ρk−1

n 〉 in position space have been determined
[13,21,22] what has allowed us to find the values for the position variance, Rényi,
Shannon and Tsallis entropies; in addition the position Fisher information F[ρn] is
also known [13]. In momentum space, however, the situation is very different; while
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the second-order moment 〈p2〉 and the Fisher information F[γn] have known values
[13], the entropic moments and consequently the Rényi and Tsallis entropies have not
yet been able to be calculated, mainly because all these three quantities depend [13]
on the Dirichlet-like trigonometric integrals [23]

In,k =
+∞∫

−∞

⎡
⎢⎣ sin2

(
t − πn

2

)
(

t2 − π2n2

4

)2

⎤
⎥⎦

k

dt, (2)

(compare with (1)).
This functional has been recently computed only in the two following cases [13]:

(a) n fixed and the first few values of k, and (b) k fixed and very large n. A main
purpose of this paper is to calculate this functional for the generic pair (n, k), and
then to find the values of all entropic moments, the Rényi entropies and lengths, the
Tsallis entropies and the associated uncertainty relations in momentum space. This
opens the way to calculate various complexity measures not only in position space but
also in momentum space. This is the case of the López-Ruiz-Mancini-Calbet (LMC,
in short) [24] and the Fisher-Rényi [25] complexities, where the Rényi entropy plays
an important role; in particular, the LMC complexity of the particle-in-a-box has been
numerically studied in [26,27] and mathematically considered in [13]. It has been
recently reviewed the high relevance of these statistical complexity measures in ana-
lysing a great diversity of physical phenomena related with the internal disorder of the
intrinsic structure of many-electron systems [28].

The paper is structured as follows. Firstly, in Sect. 2 the information-theoretic mea-
sures of a one-dimensional probability distribution needed in this work are briefly
discussed. Then, in Sect. 3, the calculation of the trigonometric integral In,k is explic-
itly carried out. The resulting expression is used in Sect. 4 to find the values of the
entropic moments, Rényi’s measures and Tsallis’ entropies in momentum space, as
well as the associated uncertainty-like expressions which combines them with the cor-
responding quantities in position space with integer orders. Finally, the conclusions
and some open problems are given.

2 Information-theoretic measures of a probability density: Basics

The uncertainty measures of a random variable X are given by the spreading measures
of the corresponding probability density ρ(x), x ∈ (−∞,+∞). These measures are
defined either in terms of the moments-around-the-origin (or simply, power moments)
〈xk〉 (such as, e.g., the variance V [ρ] = 〈x2〉 − 〈x〉2) or in terms of the frequency or
entropic moments Wk[ρ] of ρ(x), which are defined by

〈xk〉 =
+∞∫

−∞
xkρ(x)dx,
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and

Wk[ρ] =
〈
ρk−1

〉
=

+∞∫
−∞

[ρ(x)]k dx, (3)

respectively. From the latter quantities various information-theoretic measures have
been defined, such as the Rényi entropy [5]

Rα[ρ] = 1

1 − α
ln Wα[ρ] = 1

1 − α
ln

〈
ρα−1

〉
, α > 0, (4)

and the Tsallis entropy [7]

Tα[ρ] = 1

α − 1
(1 − Wα[ρ]) = 1

α − 1

(
1 −

〈
ρα−1

〉)
, α > 0. (5)

The limiting case α → 1 of these two quantities is the celebrated Shannon entropy [6]

S[ρ] = −
+∞∫

−∞
ρ(x) ln ρ(x)dx .

In contrast to these three entropy quantities which measure in various (but comple-
mentary) ways the total extent in which the random variable is distributed, there exists
a qualitatively different spreading quantity: the Fisher information with respect to the
location parameter (or simply Fisher information, heretoforth), defined [3] by

F[ρ] =
〈[

d

dx
ln ρ(x)

]2
〉

=
+∞∫

−∞

[
ρ′(x)

]2

ρ(x)
dx .

Indeed, contrary to the variance and the Rényi, Shannon and Tsallis entropies, the
Fisher information has a locality property since its value mainly comes from the
regions where the density is more oscillatory (i.e. when the density has more nodes
per unit argument of x). In other terms, the Fisher information is very sensitive
to the fluctuations of ρ(x). Then, it provides an estimation of the oscillatory character
of the density while the Rényi, Shannon and Tsallis entropies measure in different
ways the total extent in which the density is distributed.

The five spreading measures previously defined, although interesting per se, cannot
be mutually compared because either they are dimensionless or they do not have the
same units. To overcome this problem, following Hall [4], we will use instead the so-
called “direct spreading measures” to analyze the uncertainty of the random variable;

namely, the standard deviation, �x = (V [ρ]) 1
2 , and the information-theoretic lengths

of Rényi, Shannon (also called entropy power) and Fisher defined by

L R
α [ρ] ≡ exp (Rα[ρ]) ,

L S[ρ] ≡ exp (S[ρ]) ,
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and

δx ≡ L F [ρ] ≡ 1√
F[ρ] ,

respectively. All these quantities have the same units as the random variable, and they
satisfy the three following properties: translation and reflection invariance, linear scal-
ing and vanishing as the density approach to the Dirac delta. Moreover, all of them
fulfil an uncertainty relation.

3 Calculation of the Dirichlet-like trigonometric functionals

In this section we give and prove Theorem 1, from which follows the main result of
the paper.

Theorem 1 The integral In,k , defined in (2), has the value

In,k =(πn)−2k
k−1∑
j=0

(
2 j + 2k − 1

2k − 1

)
2π(πn)−2 j

(− 1
4

) j

(2k − 2 j − 1)!
k−1∑
i=0

(−1)i
(

2k
i

)
(k−i)2k−2 j−1,

for n = 1, 2 . . ., and k = 1, 2, . . .

In particular for k = 1 and k = 2, one easily has the values

In,1 = 2

πn2 ; In,2 = 4

3π3n4

(
1 + 15

2π2n2

)
, (6)

in agreement with the corresponding values already obtained in [13]. For complete-
ness, let us also collect here that the asymptotical (n → ∞) values of In,k are known
[13] to be

In,k � bk

π2k−1n2k
, (7)

where

bk = 4k
k−1∑
i=0

(−1)i (k − i)2k−1

i !(2k − i)! ; k ≥ 1. (8)

It is worth pointing out that Eq. (7) can be obtained from Theorem 1 simply by taking
the first term of the sum (i.e., j = 0).

To prove Theorem 1, we will use three Lemmas. In Lemma 1 we expand the
reciprocal of the product (t − πn/2)2k(t + πn/2)2k contained in the Dirichlet-like
kernel [23] of the integral (3) as a sum of simple fractions. Putting this result into
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Eq. (2), Lemma 2 shows that the calculation of In,k reduces to the evaluation of the
integral

Kn, j =
∞∫

−∞

sin2k u

u2(k− j)
du. (9)

Then, in Lemma 3 this integral is explicitly calculated, and consequently Theorem 1
follows in a straightforward manner.

Lemma 1 The following identity holds true:

1(
t − πn

2

)2k (
t + πn

2

)2k
= (πn)−2k

2k−1∑
j=0

(πn)− j
(

j + 2k − 1
2k − 1

)

×
[(

t + πn

2

) j−2k + (−1) j
(

t − πn

2

) j−2k
]

. (10)

Proof of Lemma 1 We will expand 1

(t− πn
2 )

2k
(t+ πn

2 )
2k := A(t) into a sum of simple

fractions; i.e. each term of this sum has one pole in variable t with certain multiplicity
and the numerators (residues) of the terms do not depend on t . First, let us take

u := t − πn

2
⇒ A = (u + πn)−2k

u2k
= (πn)−2k

⎡
⎣2k−1∑

j=0

u j−2k(πn)− j
(−2k

j

)⎤
⎦

+ f (u),

where f (u) = O(1) when u → 0. Now, let us use

u := t + πn

2
⇒ A= (u−πn)−2k

u2k
=(πn)−2k

⎡
⎣2k−1∑

j=0

(−1) j u j−2k(πn)− j
(−2k

j

)⎤⎦+ f̃ (u),

where f̃ (u) = O(1) when u → 0. Here we used the notation

(−2k
j

)
= (−2k)(−2k − 1) · · · (−2k − j + 1)

j ! .

Then, coming back to variable t we have the following representation for A(t) as
sum of simple fractions:

A(t) = (πn)−2k
2k−1∑
j=0

(πn)− j
(−2k

j

)[(
t − πn

2

) j−2k + (−1) j
(

t + πn

2

) j−2k
]

+ f̂ (t),
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where f̂ (t) = f (t)+ f̃ (t). Since poles of A(t) with their multiplicities coincide with
the poles of the sum from the right hand side, then function f̂ (t) has no poles in the
whole complex plain and therefore, by Liouville theorem, function f̂ (t) must be a
constant. Taking into account that A(∞) = 0 and the sum from the right hand side
also equal zero for t → ∞ we get f̂ (t) = 0.

Finally, passing from

(−2k
j

)
to

(
j + 2k − 1

2k − 1

)
we arrive to validity of

Lemma 1. ��
Lemma 2 The integrals In,k defined by (2) simplify as

In,k = (πn)−2k
k−1∑
j=0

2(πn)−2 j
(

2 j + 2k − 1
2k − 1

) ∞∫
−∞

sin2k u

u2(k− j)
du.

Proof of Lemma 2 We substitute the sum from Lemma 1 in the expression (2) of In,k .
Then, it is straightforward to see that

In,k = (πn)−2k
2k−1∑
j=0

(πn)− j
(

j + 2k − 1
2k − 1

)⎡
⎣ ∞∫
−∞

sin2k
(

t − πn

2

) (
t + πn

2

) j−2k
dt

+(−1) j

∞∫
−∞

sin2k
(

t − πn

2

) (
t − πn

2

) j−2k
dt

⎤
⎦ . (11)

Due to the periodicity of the sine function, these two integrals have the same value:

∞∫
−∞

sin2k
(

t − πn

2

) (
t − πn

2

) j−2k
dt =

∞∫
−∞

sin2k
(

z + πn

2

) (
z + πn

2

) j−2k
dz

=
∞∫

−∞
sin2k

(
z − πn

2

) (
z + πn

2

) j−2k
dz,

where the change of variable t = z + πn has been used in the first equality.
Thus, the terms in (11) with odd j vanish, so we can express In,k as

In,k =(πn)−2k
k−1∑
j=0

(πn)−2 j
(

2 j + 2k − 1
2k − 1

)
2

∞∫
−∞

sin2k
(

t − πn

2

) (
t − πn

2

)2 j−2k
dt.

Finally, the change of variable u = t − πn
2 yields the statement of the lemma. ��

Lemma 3 The integrals Kn, j defined by (9) are given by

∞∫
−∞

sin2k u

u2(k− j)
du = π

(− 1
4

) j

(2k − 2 j − 1)!
k−1∑
i=0

(−1)i
(

2k
i

)
(k − i)2k−2 j−1.
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Proof of Lemma 3 We use the Fourier transform

F[ f ](ω) :=
∞∫

−∞
f (u)e−iωudu,

to compute integral

∞∫
−∞

f (u)du = F[ f ](0), f (u) :=
(

sin u

u

)2(k− j)

sin u2 j .

We have

F
[

sin u

u

]
(ω) =

∞∫
−∞

eiu − e−iu

2iu
e−iωudu =

−i∞∫
+i∞

e−s − es

2s
eωs ds

i

= 1

2π i

+i∞∫
−i∞

(
π

es − e−s

s

)
eωsds,

where s = −iu. The last integral is computed using the table of inverse Laplace
transforms (see [29], formulas 29.2.2 and 29.3.61):

F
[

sin u

u

]
(ω) = π (H(ω + 1) − H(ω − 1)) ,

where H(ω) is the Heaviside function

H(ω − k) =
{

1, ω ≥ k
0, ω < k

.

Then we have

F[sin u](ω) = 1

i

d

dω
F

[
sin u

u

]
(ω) = π

i
[δ(ω − 1) − δ(ω + 1)] ,

where δ(ω) is a Dirac delta function, which is characterized by

F(ω) ∗ δ(ω − a) = 1

2π
F(ω − a), (12)

where the convolution for Fourier transforms is defined as

F(ω) ∗ G(ω) = 1

2π

∞∫
−∞

F(ξ)G(ω − ξ)dξ,
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and we have

F[ f ](ω) ∗ F[g](ω) = F[ f g](ω).

Therefore, since (12)

H(ω + 1) − H(ω − 1) = H(ω) ∗ [δ(ω + 1) − δ(ω − 1)] ,

we obtain

F
[(

sin u

u

)2(k− j)

sin2 j u

]
(ω) = (−1) jπ2k H ∗ H ∗ · · · ∗ H︸ ︷︷ ︸

2(k− j)

∗ [δ(ω + 1) − δ(ω − 1)] ∗ · · · ∗ [δ(ω + 1) − δ(ω − 1)]︸ ︷︷ ︸
2k

. (13)

Computing

H ∗ · · · ∗ H︸ ︷︷ ︸
2(k− j)

= 1

(2π)2(k− j)−1

|ω+|2(k− j)−1

(2(k − j) − 1)! , |ω+| := ωH(ω),

we substitute the result in (13), and using (12) we can obtain an explicit form for

F
[( sin u

u

)2(k− j)
sin2 j u

]
(ω). Finally, taking the obtained expression for ω = 0, we

arrive to assertion of the Lemma. ��

4 Rényi measures and Tsallis entropies in momentum space

In this Section we give the values of the entropic moments and the Rényi and Tsal-
lis entropies as well as the associated Rényi lengths of the infinite-well potential in
momentum space. Moreover, the uncertainty-like expressions which combines these
momentum quantities with the corresponding ones in position space are also provided
for integer orders.

According to Eqs. (1) and (3), one has that the momentum entropic moments are
given by

Wk[γn] =
+∞∫

−∞

[
γn(p)

]k
dp =

(
πn2

2

)k

ak−1 In,k, k = 1, 2, . . . , (14)

where the integral In,k is given by Theorem 1. Notice that taken into account (6), one
has the normalization W1[γn] = 1 and the averaging momentum density

W2[γn] = 〈γn〉 = a

3π

(
1 + 15

2π2n2

)
,
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for k = 1 and 2, respectively. Moreover, taking into account (7) one has the asymp-
totical values

Wk[γn] � bk

2kπk−1 ak−1; k ≥ 1, n → +∞.

Now, from Eqs. (1), (4) and (14) one finds the values for the momentum Rényi
entropies and lengths

Rk[γn] = 1

1 − k
ln Wk[γn] = − ln a + 1

1 − k
ln

((
πn2

2

)k

In,k

)
(15)

and

L R
k [γn] = exp (Rk[γn]) = [

Wk[γn]
] 1

1−k = 1

a

(
πn2

2

) k
1−k (

In,k
) 1

1−k , (16)

respectively. Moreover, from Eqs. (1), (5) and (14) one obtains the values for the
momentum Tsallis entropies

Tk[γn] = 1

k − 1
(1 − Wk[γn]) = 1

k − 1

[
1 −

(
πn2

2

)k

ak−1 In,k

]
. (17)

The values of In,k given by Theorem 1 together with Eqs. (15)–(17) provide the
momentum Rényi and Tsallis quantities, respectively, in a straightforward manner.
Moreover, since the Rényi and Tsallis entropies in position space are known [22,13]
to be

Rk[ρn] = ln a + 1

1 − k
ln

(
2


(
k + 1

2

)
√

π
(k + 1)

)

and

Tk[ρn] = 1

k − 1

[
1 − 2

ak−1
√

π



(
k + 1

2

)

(k + 1)

]
,

respectively, with k = 1, 2, . . ., it is possible to easily calculate the position-momen-
tum Rényi uncertainty-like sum Rk[ρn]+ Rl [γn] and Tsallis uncertainty-like quotient

[1 + (1 − k)Tk[ρn]] 1
2k

[
1 + (1 − l)Tl [γn]]− 1

2l .
Finally, let us examine the position-momentum product of the Rényi lengths,

L R
k [ρn] × L R

k [γn]. From (16) and the position Rényi length

L R
k [ρn] = 22+ 1

k−1 a

(
2k
k

)− 1
k−1

,
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one has

L R
k [ρn] × L R

l [γn] = 22+ 1
k−1

(
2k
k

)− 1
k−1

[(
πn2

2

)l

In,l

]− 1
l−1

.

Now the use of Theorem 1 in this expression yields immediately the explicit value
of this position-momentum uncertainty-like product. For further discussions on the
uncertainty measures of the particle-in-a-box system, and its generalization to D-
dimensions we refer to Ref. [13].

5 Conclusions and open problems

In this paper we have extended the information-theoretic analysis of the non-relativistic
particle-in-a-box system (i.e., a particle moving in an infinite-well potential) [13,19–
22], by explicitly calculating the Rényi and Tsallis entropies of integer order for all
ground and excited quantum states in momentum space. It has required the exact eval-
uation of the trigonometric functionals In,k (see Eq. (2)) with the Dirichlet-like kernel
(sin θn/θn)2k , so much useful in Fourier analysis. It is worth pointing out here that the
calculation of these quantities for non-integer orders in both position and momentum
spaces remains to be an open problem; they are needed to set up the corresponding
uncertainty relations which link position and momentum quantities with conjugated
orders [2,11,30–32]. Moreover, the evaluation of the momentum Shannon entropy is
not yet known except for the lowest and highest excited states of the system. This is
because this momentum functional has a trigonometric kernel of logarithmic form (see
[13, Eqs. (13)–(14)]). Finally let us point out that the generalization to D dimensions
and the inclusion of the relativistic effects to the entropies of the infinite-well potential
are further interesting open problems.
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